A SOCKS-based IPv6/IPv4

ranslator Architecture

<draft-kitamura-socks-ipv6-trans-arch-00.txt>

Hiroshi Kitamura NEC Corporation

SOCKS64: An IPv4-I1Pv6 intercommunication
gateway using SOCKS5 protocol

<draft-Jinzaki-socks64-00.txt>

Shinji Kobayashi Fujitsu Laboratories LTD.

SOCKSv5-based IPv4-1Pv6 Transition Mechanisms
History and Status

« RFC1928 "SOCKS Protocol V5," April 1996

o Fujitsu Labs. first introduced the idea at NGTRANS, Dec.1997
http://www.ietf.org/proceedings/97dec/97dec-final-73.htm

 NEC proposed<draft-kitamura-socks-ipv6-00.txt>
“SOCKSV5 Protocol Extensions for IPv6/IPv4 Communication

Environment,” at STP BOF, August 1998
Two Independent Implementations

Fujitsu Labs. distributes an implementation since July 1998
ftp://ftp.kame.net/pub/kame/misc/socks64-v10r3-980623.tgz

NEC has finished an implementation and is planning to open
Its source in January 1999 http://www.socks.nec.com/

Contents

Basic SOCKS-based Translator Mechanism

DNS Name Resolving Procedure
— DNS Name Resolving DelegaticamdAddress Mapping

Advanced SOCKS-based Translator Mechanism
(Multiple Chained Relay Mechanism

Characteristics and Constraints

Development Status
— Fujitsu Labs. Implementation

Field Trial Results
— WIDE Project Trials, Fujitsu to 6bone connection

Comparison and Summary

Basic Translator mechanism

Client C

Same__~
AP 1S ™

Application

J

Socks Lib t
Sock DNC‘L

IPI/X

Netwprk I/F

t

0 D
O T

\ 4
Socksiﬁ'd~

Translator T

Tr/arﬁsTIN\or

Sdbket, DNS

!

IPYX | IPVY

Neltwork

0 D

Connection

/

<+—>
toD (control)

Destination D

Application

Sockét, DNS

IPVY

Netwbrk I/F

Mrmal

““data” connection

DNS Name ResolvipProcedure
(DNS Name Resolving DelegatioandAddress Mappinj

Application
FODN socket
—

@ 3
gethostbyname?2() Coqe(?t()

getaddreinfo() ®

|

FQvDNyte IP
fake IF

@(P

S0EHE Socks Lib

FQDN
®

CONs Served

@ real IP
C>

FQDN Translator
real |
socket

connect()

cksified connection

DNS Name ResolvipProcedure
(DNS Name Resolving DelegatioandAddress Mappiny

Try DNS name resolving with “FQDN”

Receive “fake IP”

Create connection with “socket” (includes “fake IP")

Pick up registered “FQDN?” from the mapping table

. Send “FQDN?” to the Translator on the socksified connection

. DNS name resolve by the normal DNS server

. Receive “real IP”

. Create connection to the Destination with “socket” (includes “real I1P”)

® N OA N R

Current SOCKSv5 protocalose not have a dedicated handshake
for theDNS name resolving delegation
<draft-kitamura-socks-ipv6-00.txt> proposed this extension.

Advanced Translator mechanism
(Multiple Chained Relay)

Client C Translator T1 Translator T2 Destination D
Application
Same<m Socs Lib ;0 o Trafﬁ% {oD Trqn’s‘léterZA Application
APIs IS o ckde DNS 10 SUSAker, ANFIC TT2[Sobket, DNF O [Sockdt, DNS
IP|/X IPYX | IRVvY IPYY | IRvZ IPVZ
Netwkrk I/F N tworlillF Ndtwork]| I/F Network I/F
\ 4 \ 4
| datg | datg data
to D (control) to D (control)
Socksified Socksified Normal

Connection Connection Connection

Characteristics of Mulple Chained Rela
(compared with IP Tunneling technigue)

* No Fragmentation vulnerability

— IP tunneling technigue (en/decapsulation) change the packet size.
It has Fragmentation vulnerability

— SOCKS mechanism do8EOT change the packet size.

e No Hop limit (metric number) problem

— The tunneling technique creates one virtual connections over the
dynamically routed and configured networks.
Real hop limit (metric number) information is hidden

— SOCKS mechanism is composed of real connections.
Real hop limit (metric number) informationNEOT hidden

 Well-authenticated relay by the native SOCKS methods

Topology Combinations

C===T1===T2 ===

Pv4 - |IPv4 - IPv4
C===T === Pv4 - |Pv4 -IPv6
Dv4 - |Pv4 + Pv4 -|IPv6 - IPv4
jﬁ V4 - IPV6 Pv4 -IPV6 - IPV6
PV6 - IPv4
V6 - IPV6 Pv6 - IPv4 - IPv4

%}> PV6 - IPv4 -1IPV6
PV6 - IPV6 - IPv4
IPv6 - IPV6 - |IPV6

Support Topologies

IPvX
Socksified

IPVY

Basic (Neighboring Connection)

RN

IPVX1PuX IPVY IPvZ
Socksified Socksified

Advanced (Multiple Chained Relay Connection)

Implementation Histor in
Fujitsu Labs.

Implemented the prototype on Solaris IPv6 in Aug., 1996

first introduced the idea at NGTRANS in Dec., 1997
http://www.ietf.org/proceedings/97dec/97dec-final-73.htm

distributes an implementation since Jul., 1998
ftp://ftp.kame.net/pub/kame/misc/socks64-v10r3-980623.tgz

Internet-Draft in Nov., 1998
ftp://ftp.ietf.org/internet-drafts/draft-jinzaki-socks64-00.txt

Implementation Status

SOCKS64: Fujitsu Lab.’s Implementation
Runs on BSD/OS 3.1 with KAME

SOCKSS5 Client Library (e.g. SocksCap32) can
be used without modification

Freely available
ftp://ftp.kame.net/pub/kame/misc/socks64-v10r3-980623.tgz

Support a
— Convert
— Convert

PORT and L

PASV and L

nplication dependent handling for ftp

PRT commands
PSV commands

Field Trial Results (1)

e 6bone - Fujitsu
— Since Jul. 1998
— Fujitsu Network is already “socksified”
— 20 clients
— telnet, ftp, http

@— SOCKS64 @

IPv4 WWW/V6 IPv6

http://www.v6.pds-flab.rwcp.or.jp/ (IPv6 only)

Field Trial Results (2)

« WIDE Camp
— Sep. 1997, Mar. 1998, Sep. 1998
— 35 clients
— telnet, ftp, http, ssh, pop, imap3
— Cooperation with FAITH IPv6-IPv4 Translator

WIDE Camp SOCKS64 FAITH

IPv4 IPv6 IPv4

Conparison

Implementation |DNS Address Client
Layer Change Table Library
N AT Network Needed Needed NOT
based Needed
FAITH Application Needed Needed NOT
Needed
SOCKS5|Application NOT NOT Needed
based Needed Needed

“NAT based” can be fast

“*SOCKSS5 based” does not require DNS change nor

managing address table

*SOCKSS5 based” requires the client library

Characteristics (1/2)

DNS modification is NOT necessary
— Address map servers are NOT necessary
— Global and wide reserved address space is NOT necessary

Application independent
— Basically support all applications which use the socket and DNS APIs

— Exceptionsapplications which exchange IP address information at the
application level. (e.qg., ftp PORT command)

OS and NIC types independent
— Support both UNIX and Windows OSs
— Not depend on types of physical NICs.

Only easy socksify procedure is necessary
— Dynamic link library technique helps the socksification.

IPv6 new features (e.dRSeg¢ can be introduced easily
— Since relayed two connections are terminated at the Translator

Characteristics (2/2)

Current existing client SOCKSv5 library can be used

— In case of the IPv4 -> IPv6 direction translation,
current existing client SOCKSV5 library can be used without modification.

Both TCP andUDP relay translations are possible.

— Since the SOCKSV5 protocol support both TCP and UDP relays, this
architecture can translate not only TCP but also UDP relays.

Both IPv4->IPv6 andIPv6->IPv4 translations are possible
Multiple chained relay is possible

Can support FTP (IP address information exchange applications)
— The Translator has the capability to introduce protocol translation routines.

— If protocols are known (e.g., ftp), the Translator can support them by
Introducing special protocol translation routines

Constraints

 Essential constraint

— getpeername() and getsockname() functions can not provide correct IP
address information. Because |IPv6 and IPv4 are different protocols.
Port information is correct.

— Most applications call them to gedrt information.
From the actual viewpointhis constraint is small
e Limitation of the SOCKS mechanism
— Current SOCKSV5 can not socksify all of tricky applications.

 Fake address dealing constraint
— The fake address must be dealt as a temporary value in the application.

— Most applications record FQDN addes not record resolved fakddres
From the actual viewpointhis constraint is small

