
A SOCKS-based IPv6/IPv4 Translator Architecture

<draft-kitamura-socks-ipv6-trans-arch-00.txt>

SOCKS64: An IPv4-IPv6 intercommunication
 gateway using SOCKS5 protocol

Shinji Kobayashi Fujitsu Laboratories LTD.

<draft-jinzaki-socks64-00.txt>

Hiroshi Kitamura NEC Corporation

SOCKSv5-based IPv4-IPv6 Transition Mechanisms
History and Status

• RFC1928 "SOCKS Protocol V5," April 1996

• Fujitsu Labs. first introduced the idea at NGTRANS, Dec.1997
http://www.ietf.org/proceedings/97dec/97dec-final-73.htm

• NEC proposed <draft-kitamura-socks-ipv6-00.txt>
“SOCKSv5 Protocol Extensions for IPv6/IPv4 Communication
Environment,” at STP BOF, August 1998

Fujitsu Labs. distributes an implementation since July 1998
 ftp://ftp.kame.net/pub/kame/misc/socks64-v10r3-980623.tgz

Two Independent Implementations

NEC has finished an implementation and is planning to open
 its source in January 1999 http://www.socks.nec.com/

Contents

• Basic SOCKS-based Translator Mechanism

• DNS Name Resolving Procedure
– DNS Name Resolving Delegation and Address Mapping

• Advanced SOCKS-based Translator Mechanism
(Multiple Chained Relay Mechanism)

• Characteristics and Constraints

• Development Status
– Fujitsu Labs. Implementation

• Field Trial Results
– WIDE Project Trials, Fujitsu to 6bone connection

• Comparison and Summary

Basic Translator mechanism

Application

Socket, DNS
IPvX

Network I/F

Socket, DNS
IPvY

Network I/F

Translator

Socket, DNS
IPvY

Network I/F
IPvX

Application

Client C Translator T Destination D

Same
APIs Socks Lib

to D
to T to D

Socksified
Connection

Normal
Connectiondata data

(control)to D

DNS Name Resolving Procedure
(DNS Name Resolving Delegation and Address Mapping)

ApplicationApplication

Socks LibSocks Lib

FQDN

FQDN

fake IP
socket

gethostbyname2()
getaddreinfo()

connect()

socket

fake IP

FQDN

FQDN
real IP

DNS Server

TranslatorTranslator
1

2

3

4

5

6

7 real IP

socksified connection

connect()

socket
8

DNS Name Resolving Procedure
(DNS Name Resolving Delegation and Address Mapping)

1. Try DNS name resolving with “FQDN”

2. Receive “fake IP”

3. Create connection with “socket” (includes “fake IP”)

4. Pick up registered “FQDN” from the mapping table

5. Send “FQDN” to the Translator on the socksified connection

6. DNS name resolve by the normal DNS server

7. Receive “real IP”

8. Create connection to the Destination with “socket” (includes “real IP”)

Current SOCKSv5 protocol dose not have a dedicated handshake
for the DNS name resolving delegation.

<draft-kitamura-socks-ipv6-00.txt> proposed this extension.

Advanced Translator mechanism
(Multiple Chained Relay)

Socket, DNS
IPvZ

Network I/F

Translator2

Socket, DNS
IPvZ

Network I/F
IPvY

Application

Translator T2 Destination D

to D
to T2 to D

Socksified
Connection

Normal
Connection

data data
(control)to D

Application

Socket, DNS
IPvX

Network I/F

Client C

Same
APIs

Socks Lib to T
to S

Socksified
Connection

data
(control)to D

Translator1

Socket, DNS
IPvY

Network I/F
IPvX

Translator T1

to D
to T1

Socks Lib

Characteristics of Multiple Chained Relay
(compared with IP Tunneling technique)

• No Fragmentation vulnerability
– IP tunneling technique (en/decapsulation) change the packet size.

It has Fragmentation vulnerability

– SOCKS mechanism dose NOT change the packet size.

• No Hop limit (metric number) problem
– The tunneling technique creates one virtual connections over the

dynamically routed and configured networks.
Real hop limit (metric number) information is hidden

– SOCKS mechanism is composed of real connections.
Real hop limit (metric number) information is NOT hidden

• Well-authenticated relay by the native SOCKS methods

Topology Combinations

C === T === D
IPv4 - IPv4
IPv4 - IPv4 - IPv6IPv6
IPv6IPv6 - IPv4 - IPv4
IPv6 - IPv6

C === T1 === T2 ===D
IPv4 - IPv4 - IPv4
IPv4 - IPv4 - IPv4 - IPv4 - IPv6IPv6
IPv4 - IPv4 - IPv6IPv6 - IPv4 - IPv4
IPv4 - IPv4 - IPv6IPv6 - - IPv6IPv6

IPv6IPv6 - IPv4 - IPv4 - IPv4 - IPv4
IPv6IPv6 - IPv4 - - IPv4 - IPv6IPv6
IPv6IPv6 - - IPv6IPv6 - IPv4 - IPv4
IPv6 - IPv6 - IPv6

Support Topologies

T
IPvX

C D

IPvX

C T1 T2

Advanced (Multiple Chained Relay Connection)

D
IPvX IPvY IPvZ

IPvY
Socksified

Socksified Socksified

Basic (Neighboring Connection)

Implementation History in
Fujitsu Labs.

• implemented the prototype on Solaris IPv6 in Aug., 1996

• first introduced the idea at NGTRANS in Dec., 1997
http://www.ietf.org/proceedings/97dec/97dec-final-73.htm

• distributes an implementation since Jul., 1998
ftp://ftp.kame.net/pub/kame/misc/socks64-v10r3-980623.tgz

• Internet-Draft in Nov., 1998
ftp://ftp.ietf.org/internet-drafts/draft-jinzaki-socks64-00.txt

Implementation Status
• SOCKS64: Fujitsu Lab.’s Implementation

• Runs on BSD/OS 3.1 with KAME

• SOCKS5 Client Library (e.g. SocksCap32) can
be used without modification

• Freely available
ftp://ftp.kame.net/pub/kame/misc/socks64-v10r3-980623.tgz

• Support application dependent handling for ftp
– Convert PORT and LPRT commands

– Convert PASV and LPSV commands

Field Trial Results (1)

• 6bone - Fujitsu
– Since Jul. 1998

– Fujitsu Network is already “socksified”

– 20 clients

– telnet, ftp, http

SOCKS64

WWW/v6

6bone

http://www.v6.pds-flab.rwcp.or.jp/ (IPv6 only)

IPv4 IPv6

Fujitsu

Field Trial Results (2)

• WIDE Camp
– Sep. 1997, Mar. 1998, Sep. 1998

– 35 clients

– telnet, ftp, http, ssh, pop, imap3

– Cooperation with FAITH IPv6-IPv4 Translator

SOCKS64 InternetWIDE Camp

IPv4 IPv6

FAITH

IPv4

Comparison
Im p le m e n ta tio n
La ye r

D N S
C h a n g e

A d d re s s
Ta b le

C lie n t
L ib ra ry

N AT
b a s e d

N e tw o rk N e e d e d N e e d e d N O T
N e e d e d

FA IT H A p p lic a tio n N e e d e d N e e d e d N O T
N e e d e d

S O C K S 5
b a s e d

A p p lic a tio n N O T
N e e d e d

N O T
N e e d e d

N e e d e d

• “NAT based” can be fast

• “SOCKS5 based” does not require DNS change nor
managing address table

• “SOCKS5 based” requires the client library

Characteristics (1/2)
• DNS modification is NOT necessary

– Address map servers are NOT necessary

– Global and wide reserved address space is NOT necessary

• Application independent
– Basically support all applications which use the socket and DNS APIs

– Exceptions: applications which exchange IP address information at the
application level. (e.g., ftp PORT command)

• OS and NIC types independent
– Support both UNIX and Windows OSs

– Not depend on types of physical NICs.

• Only easy socksify procedure is necessary
– Dynamic link library technique helps the socksification.

• IPv6 new features (e.g., IPSec) can be introduced easily
– Since relayed two connections are terminated at the Translator

Characteristics (2/2)

• Current existing client SOCKSv5 library can be used
– In case of the IPv4 -> IPv6 direction translation,

current existing client SOCKSv5 library can be used without modification.

• Both TCP and UDP relay translations are possible.
– Since the SOCKSv5 protocol support both TCP and UDP relays, this

architecture can translate not only TCP but also UDP relays.

• Both IPv4->IPv6 and IPv6->IPv4 translations are possible

• Multiple chained relay is possible.
• Can support FTP (IP address information exchange applications)

– The Translator has the capability to introduce protocol translation routines.

– If protocols are known (e.g., ftp), the Translator can support them by
introducing special protocol translation routines

Constraints

• Essential constraint
– getpeername() and getsockname() functions can not provide correct IP

address information. Because IPv6 and IPv4 are different protocols.
Port information is correct.

– Most applications call them to get port information.
From the actual viewpoint, this constraint is small.

• Limitation of the SOCKS mechanism
– Current SOCKSv5 can not socksify all of tricky applications.

• Fake address dealing constraint
– The fake address must be dealt as a temporary value in the application.

– Most applications record FQDN and does not record resolved fake addres
From the actual viewpoint, this constraint is small.

